DNA and Chromosomes Chapter 3.1

What do you know about DNA? Chromosomes? Genetics?

http://www.brainpop.com/science/cellularlifeandgenetics/dna/

DNA

- The genetic material in cells is called DNA (or deoxyribonucleic acid).
- DNA is in the nucleus of a eukaryotic cell and it is a chemical that contains information growth and functions- it's like the brain of the cell telling it what to do.
- DNA is made of two strands and forms a twisted ladder or "double helix".
- DNA is wrapped around protein (like thread around a spool) and compacted into structures called chromosomes.

Human DNA would be 2 meters long if it wasn't wrapped up inside the chromosome!

Chromosomes

- Humans have 46 chromosomes, or 23 pair. The 23rd pair is what determines your gender.
- Other species have different numbers of chromosomes. For example, a dog has 78 (39 pair) and corn has 20 (10 pair).
- During cell division, chromosomes consist of 2 chromatids that are joined together by a centromere.

Why is cell division important anyway??

- We are very different than other species.
 - BUT what we do have in common with them is that almost all multicellular organisms are made of trillions of cells.
- Cell division is essential for growth, development, and repair.

Growth

- In general, a larger organism doesn't have larger cells than a smaller organism, it just has MORE.
- Individual cells grow in size but there are limits to how large they can grow.
- Cells need a high ratio of surface area to volume in order to function.
 - As a cell grows, that ratio decreases.
 - When a cell divides into two smaller cells, the ratio of surface area to volume for each cell increases again.
- As a cell grows, more processes are needed for it to function, so its demand for instructions from DNA increases, but the amount of DNA stays the same.

Development

- Although multicellular organisms begin as single cells, they grow into larger organisms through cell division, but cell division isn't the only reason organisms develop.
- During development, cells become specialized to perform particular functions.
 - They may take on different shapes or structures, become layered (skin cells), or become long and thin (nerve cells).
 - These cells still have the same DNA as the other cells, they are just specialized.

Repair

 Think about when you cut yourself or broke one of your bones. Over time your body healed itself, right?

- The body repairs injuries through cell division.
- As cells age and die, they have to be replaced.
- The human body is made of 200 different types of cells, which are replaced at different rates.
 - Every minute your skin loses about 40,000 cells and they are replaced with new ones.
 - Your brain cells last a very long time and don't divide often.

The Cell Cycle

- The cell cycle is the normal sequence of development and division of a cell.
- The cell cycle consists of two main parts:
 - Interphase- the cell carries out its functions
 - Cell division- consists of **mitosis** and **cytokinesis**
- ALL CELLS DIVIDE BUT ONLY EUKARYOTES UNDERGO MITOSIS!
- As a result of cell division, the original (parent) cell separates into two genetically identical daughter cells.

INTERPHASE

- THE PART OF THE CELL CYCLE WHERE THE CELL IS <u>NOT</u> DIVIDING.
- The cell grows about twice its original size.
- It carries out normal activities(cellular transport, cellular respiration).
- Changes that occur are in preparation for cell division. DNA is exactly duplicated so that after cell division occurs each new cell gets a complete set of DNA.

MITOSIS

- Mitosis is the part of the cell cycle where the nucleus divides.
- Remember the DNA is in the nucleus!
- Prokaryotes DO NOT undergo mitosis because they have no nucleus.
- The function of mitosis is to move the DNA and other material in the parent cell into position for cell division.

Steps of Mitosis

- PROPHASE- chromosomes form
- METAPHASE- chromosomes line up
- ANAPHASE- chromosomes separate
- TELOPHASE- nuclei form

PROPHASE

- CHROMOSOMES FORM
- DNA in the nucleus condenses and becomes visible (under a microscope).
- Each chromosome consists of two chromatids held together by a centromere.
- The membrane around the nucleus disappears.

METAPHASE

- CHROMOSOMES LINE
 UP
- Chromosomes line up in the middles of the cell, "along the equator".

ANAPHASE

- CHROMOSOMES SEPARATE
- Chromatids split, resulting in two separate identical chromosomes.
- These chromosomes are pulled onto separate sides of the cell.

TELOPHASE

- NUCLEI FORM
- New nuclear membrane forms around each group of chromosomes.
- Chromosomes return to their threadlike form.

CYTOKINESIS

- Cytokinesis is the final stage of the cell cycle.
- It is the division of the parent cell's cytoplasm.
- Cytokinesis occurs immediately after mitosis.
- Once complete, the two daughter cells are completely separated, each surrounded by its own cell membrane. They are genetically identical to their parent cell, but smaller.